

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 45 (2014) 91–97

www.elsevier.com/locate/endm

Dominating Coloring Number of Claw-free Graphs

A. Abdolghafurian ¹

Department of Mathematics Yazd University P.O. Box 89195-741, Yazd, Iran

S. Akbari²

Department of Mathematics Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran &

School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran

S. Hossein Ghorban³

School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran

S. Qajar⁴

Department of Mathematics Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran

Abstract

Let G be a graph. It is well-known that G contains a proper vertex-coloring with $\chi(G)$ colors with the property that at least one color class of the coloring is a dominating set in G. Among all such proper vertex-coloring of the vertices of G, a coloring with the maximum number of color classes that are dominating sets in G is called a dominating- χ -coloring of G. The number of color classes that are dominating sets in a dominating- χ -coloring of G is defined to be the dominating- χ -color number of G and is denoted by $d_{\chi}(G)$. In this paper, we prove that if G is a claw-free graph with minimum degree at least two, then $d_{\chi}(G) \geq 2$.

Keywords: Chromatic number, dominating set, maximal independent set, dominating- χ -color number, claw-free graph

1 Introduction

Throughout this paper all graphs are simple. Let G be a graph with the vertex set V(G) and the edge set E(G). For any vertex $v \in V(G)$, the open neighborhood v, denoted by N(v), is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood, denoted by N[v] is $N(v) \cup \{v\}$. We denote the degree of v by d(v) which is |N(v)| and the minimum degree of G is denoted by $\delta(G)$. The vertex v is called pendant if d(v) = 1. For a set $S \subseteq V$, its open neighborhood is $N(S) = \bigcup_{v \in S} N(v)$ and its closed neighborhood is $N[S] = N(S) \cup S$. In the graph G, a set $S \subseteq V(G)$ is a dominating set if every vertex not in S has a neighbor in S. Let G be a graph and $X \subseteq V(G)$. We define G[X] as the induced subgraph on X. The maximum cardinality of $X \subseteq V(G)$ where G[X] has no edges is called the the independent number of G and denoted by $\alpha(G)$. A graph is called claw-free if it has no claw as an induced subgraph, where claw is a graph that isomorphic to $K_{1,3}$.

The *corona* of a graph H, cor(H), is that the graph obtained from H by adding a pendant edge to each vertex of H. Cycle and complete graph of order n are denoted by C_n and K_n , respectively. Also we use $P = (v_1, \ldots, v_n)$ as a path with the vertex set $\{v_1, \ldots, v_n\}$ and the edge set $E(G) = \{v_i v_{i+1} \mid 1 \le i \le n-1\}$.

Email: a.abdolghafurian@stu.yazduni.ac.ir

² Email: s_akbari@sharif.edu

³ Email: s.hosseinghorban@ipm.ir

⁴ Email: sqajar@imp.ir

A proper vertex coloring of a graph is an assignment of colors to the vertices so that adjacent vertices get different colors. Since all coloring in this paper are proper coloring, we simply call a proper coloring a coloring. The chromatic number $\chi(G)$ is the minimum number of colors needed to color graph properly. In a given coloring of the graph, a set consisting of all those vertices assigned the same color is called a color class. These color classes partition V into independent sets, not necessarily dominating sets. If \mathcal{C} is a coloring of the graph with color classes $U_1, \ldots, U_{\chi(G)}$, then we write $\mathcal{C} = (U_1, \ldots, U_{\chi(G)})$.

Among all χ -colorings of G, let \mathcal{C} be chosen to have a color class U_1 that dominates as many vertices of G as possible. If there is a vertex in G not dominated by U_1 , then deleting such a vertex from its class in \mathcal{C} and adding it to the color class U_1 produces a new coloring that contains a color class relating to color 1 which dominates more vertices than U_1 , a contradiction. Hence the color class U_1 is a dominating set in G. Therefore every graph G contains a coloring with the property that the first class is a dominating set in G. This first observed in [4] motivated Arumugan et al. [2] to define the dominating- χ -color number. Among all coloring of G, a coloring with the maximum number of color classes that are dominating sets in G is defined to be the $dominating - \chi - coloring$ of G. The number of color classes that are dominating sets in a dominating- χ -coloring of G is defined to be the dominating- χ -color number of G, denoted by $d_{\chi(G)}$. According to the mentioned observation, among dominating- χ -coloring of G, there is a coloring $\mathcal{C} = (U_1, \ldots, U_{\chi(G)})$ so that U_1 and U_2 dominate V(G) and $V(G)\setminus U_1$, respectively. Therefore we call a χ -coloring $\mathcal{C} = (U_1, \ldots, U_{\chi(G)})$ as hierarchical coloring of order t if and only if U_1 is a dominating set and for each $i, 2 \le i \le t$, the set U_i dominates $V(G)\setminus\bigcup_{j=1}^{i-1}U_j$. Obviously, for every $t, 1\leq t\leq \chi(G)$, the set of $\chi(G)$ -colorings of G contains at least one hierarchical coloring of order t.

There has been a great deal of interest in relating graph coloring and the dominating set which have been well studied; for example see [3]. The dominating- χ -color number was first aforementioned in [2]. Arumugam et al. [1] presented conditions on a graph G satisfying $d_{\chi}(G) = 1$, moreover, they provided an upper bound on the dominating- χ -color number. They proved that for every pair of integers (k,l) there exists a connected graph G with $\chi(G) = k$ and $d_{\chi}(G) = l$. In this paper, we show that if G is a claw-free graph and $\delta(G) \geq 2$, then the dominating- χ -color number of G is at least 2.

The following results were proved in [2].

Theorem 1.1 For all graph G, $1 \le d_{\chi}(G) \le \delta(G) + 1$.

Theorem 1.2 Let G be a graph of order n with no isolated vertex. Then,

- (i) $\chi(G) = n$ if and only if $d_{\chi}(G) = n$ if and only if $G = K_n$.
- (ii) If G is bipartite, then $d_{\chi}(G) = 2$.

Theorem 1.3 [1] For $n \ge 3$,

$$d_{\chi}(C_n) = \begin{cases} 3 \text{ if } n \equiv 3 \pmod{6}, \\ 2 \text{ otherwise.} \end{cases}$$

Let $C = (U_1, \ldots, U_{\chi(G)})$ be a vertex coloring of G and $u \in U_i, v \in U_j$, for some $1 \leq i, j \leq \chi(G)$. Let $MP_{i,j}(u, v)$ be the set of all maximal paths starting at u, v is the second vertex of these paths and other vertices of these paths belong to the color classes U_i and U_j , alternatively.

2 Results

The main goal of this paper is showing that the dominating- χ -color number of every claw-free graph with no pendant edge is at least 2. Before proving the main result, we prove the following lemmas.

Lemma 2.1 Let G be a claw-free graph with hierarchical coloring $C = (U_1, \ldots, U_{\chi(G)})$ of order 2. Let $a \in U_1$ and $N(a) \cap U_2 = \emptyset$. If there exists $u \in N(a)$ such that $N(u) \cap U_1 = \{a\}$, then G contains a hierarchical coloring $\widetilde{C} = (\widetilde{U}_1, \ldots, \widetilde{U}_{\chi(G)})$ of order 2 such that $|N[\widetilde{U}_2]| > |N[U_2]|$.

Lemma 2.2 Let G be a claw-free graph with a hierarchical coloring $C = (U_1, \ldots, U_{\chi(G)})$ of order 2 and $a \in U_1$. If the coloring satisfies two following conditions:

- (i) $N(a) \cap U_2 = \emptyset$ and $|N(u) \cap U_1| \ge 2$, for every $u \in N(a)$,
- (ii) There exists a path $P \in \bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ with one endpoint not in U_1 ,

then G contains a hierarchical coloring $\widetilde{\mathcal{C}} = (\widetilde{U}_1, \dots, \widetilde{U}_{\chi(G)})$ of order 2 such that $|N[\widetilde{U}_2]| > |N[U_2]|$.

Lemma 2.3 Let G be a claw-free graph with a hierarchial coloring $C = (U_1, \ldots, U_{\chi(G)})$ of order 2, $a \in U_1$ such that $N(a) \cap U_2 = \emptyset$ and $|N(u) \cap U_1| \ge 2$, for every $u \in N(a)$. Assume that two endpoints of every path $P \in \bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ belong to U_1 . If $P = (a, v_1, a_1, \ldots, v_r, a_r)$ and

$$\widetilde{U}_1 = (U_1 \setminus (\{a\} \cup \{a_i | 1 \le i \le r\})) \cup \{v_i | 1 \le i \le r\} \cup J,$$

$$\widetilde{U}_2 = U_2 \cup \{a\} \cup \{a_i | N(a_i) \cap U_2 = \emptyset, 1 \le i \le r\},$$

$$\widetilde{U}_{c(v_1)} = (U_{c(v_1)} \setminus \{v_i \mid 1 \le i \le r\}) \cup \{a_i \mid N(a_i) \cap U_2 \ne \emptyset, 1 \le i \le r\},$$

$$\widetilde{U}_i = U_i \setminus J, \text{ for } i \in \{3, 4, \dots, \chi(G)\} \setminus \{c(v_1)\},$$

where J is a maximal independent set of $\mathcal{J} = \{z \in V(G) \mid \{a, a_r\} \subseteq N(z), N[z] \cap \{v_1, \ldots, v_r\} = \varnothing\}$, then $\widetilde{\mathcal{C}} = (\widetilde{U}_1, \ldots, \widetilde{U}_{\chi(G)})$ is a coloring such that

- (i) \widetilde{U}_1 dominates $V(G)\setminus\{v\in N(a_r)\mid |N(v)\cap U_1|=1 \text{ and } N(v)\cap(\{v_i|1\leq i\leq r\}\cup J)=\varnothing\}.$
- (ii) \widetilde{U}_2 dominates $V(G)\backslash \widetilde{U}_1$.

Lemma 2.4 Let G be a claw-free graph with a hierarchical coloring $C = (U_1, \ldots, U_{\chi(G)})$ of order 2 and $a \in U_1$. If the coloring satisfies three following conditions,

- (i) $N(a) \cap U_2 = \emptyset$ and $|N(u) \cap U_1| \ge 2$, for every $u \in N(a)$,
- (ii) Two endpoints of each path in $\bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ belong to U_1 ,
- (iii) There exists $P = (a, v_1, a_1, \dots, v_r, a_r) \in \bigcup_{u \in N(a)} MP_{1,c(u)}(a, u)$ with endpoints a and a_r such that at least one of the following holds,
 - (1) $N(a_r) \cap U_2 = \emptyset$,
 - (2) If $h \in N(a_r) \cap U_2$, then $|N(h) \cap U_1| \geq 2$,

then G contains a hierarchical coloring $\widetilde{\mathcal{C}} = (\widetilde{U}_1, \dots, \widetilde{U}_{\chi(G)})$ of order 2 with $|N[\widetilde{U}_2]| > |N[U_2]|$.

Lemma 2.5 Let G be a claw-free graph with a hierarchical coloring $C = (U_1, \ldots, U_{\chi(G)})$ of order 2, $\delta(G) \geq 2$ and $a \in U_1$. If C satisfies three following conditions:

- (i) $N(a) \cap U_2 = \emptyset$ and $|N(u) \cap U_1| \ge 2$, for every $u \in N(a)$,
- (ii) Two endpoints of each path in $\bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ belong to U_1 ,
- (iii) For each $P = (a, v_1, a_1, \dots, v_r, a_r) \in \bigcup_{u \in N(a)} MP_{1,c(u)}(a, u)$ with endpoint a_r , there is a vertex $h \in N(a_r) \cap U_2$ such that $|N(h) \cap U_1| = 1$,

then G contains a hierarchical coloring $\widetilde{\mathcal{C}} = (\widetilde{U}_1, \dots, \widetilde{U}_{\chi(G)})$ of order 2 such that $|N[\widetilde{U}_2]| > |N[U_2]|$.

Now, we are in a position to prove the main theorem.

Theorem 2.6 If G is a claw-free graph and $\delta(G) \geq 2$, then $d_{\chi}(G) \geq 2$.

Proof. Among all hierarchical coloring of order 2, let $\mathcal{C} = (U_1, \dots, U_{\chi(G)})$ be a coloring in which $|N[U_2]|$ is maximum. We claim that U_2 dominates V(G).

Assume, to the contrary that there is a vertex $a \in V(G)$ which is not dominated by U_2 . Hence $a \in U_1$ and $N(a) \cap U_2 = \emptyset$. Since $d(a) \geq 2$, $N(a) \neq \emptyset$. Now, we have four possibilities:

Case (i) There is $u \in N(a)$ such that $N(u) \cap U_1 = \{a\}$. By Lemma 2.1, G contains a hierarchical coloring $\widetilde{\mathcal{C}} = (\widetilde{U}_1, \dots, \widetilde{U}_{\chi(G)})$ of order 2 with $|N[\widetilde{U}_2]| > |N[U_2]|$. This is a contradiction.

Case (ii) For every $u \in N(a)$, $|N(u) \cap U_1| \geq 2$ and there is a path $P \in \bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ whose one of the endpoints is not in U_1 . By Lemma 2.2, G contains a hierarchical coloring $\widetilde{C} = (\widetilde{U}_1, \widetilde{U}_2, \dots, \widetilde{U}_t)$ of order 2 with $|N[\widetilde{U}_2]| > |N[U_2]|$. This is a contradiction.

Case (iii) For every $u \in N(a)$, $|N(u) \cap U_1| \ge 2$ and two endpoints of each path in $\bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ belong to U_1 and there is $P \in \bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ with endpoints a and a_r such that $N(a_r) \cap U_2 = \varnothing$. By Lemma 2.4, G contains a hierarchical coloring $\widetilde{C} = (\widetilde{U}_1, \widetilde{U}_2, \dots, \widetilde{U}_{\chi(G)})$ of order 2 such that $|N[\widetilde{U}_2]| > |N[U_2]|$. This is a contradiction.

Case (iv) For every $u \in N(a)$, $|N(u) \cap U_1| \geq 2$ and two endpoints of each path in $\bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ belong to U_1 and there is $P \in \bigcup_{u \in N(a)} MP_{1,c(u)}(a,u)$ with endpoints a and a_r such that if $u \in N(a_r) \cap U_2$, then $|N(u) \cap U_1| \geq 2$. By Lemma 2.4, G contains a hierarchical coloring $\widetilde{C} = (\widetilde{U}_1, \widetilde{U}_2, \dots, \widetilde{U}_{\chi(G)})$ of order 2 such that $|N[\widetilde{U}_2]| > |N[U_2]|$. This is a contradiction.

Case (v) For every $u \in N(a)$, $|N(u) \cap U_1| \geq 2$, two endpoints of each path in $\bigcup_{u \in N(a)} MP_{1,C(u)}(a,u)$ belong to U_1 and for each $P \in \bigcup_{u \in N(a)} MP_{1,C(u)}(a,u)$ with endpoints a and a_r , if $u \in N(a_r) \cap U_2$ then $N(u) \cap U_1 = \{a_r\}$. By Lemma 2.5, G contains a hierarchical coloring $\widetilde{C} = (\widetilde{U}_1, \widetilde{U}_2, \dots, \widetilde{U}_{\chi(G)})$ from order 2 with $|N[\widetilde{U}_2]| > |N[U_2]|$. This is a contradiction.

We close the paper with two following remarks.

Remark 2.7 The lower bound in Theorem 2.6 is tight. For instance, consider C_n with $n \not\equiv 3 \pmod{6}$. Theorem 1.3 shows that $d_{\chi(G)} = 2$.

Remark 2.8 The condition $\delta(G) \geq 2$ in Theorem 2.6 is necessary. If $G = cor(K_n)$, then $\delta(cor(K_n)) = 1$ and $d_{\chi}(G) = 1$.

Acknowledgement

The third author is indebted to Mr. Rashid Seyedian for his kind encouragement.

References

- [1] S. Arumugam, Teresa W. Haynes, Michael A.Henning, Yared Nigussie, *Maximal Indedent Sets in minimal colorings*, Discrete Mathematics, 2010.
- [2] S. Arumugam. I. Sahl Hamid, A. Muthukamatchi, Independent domination and graph colorings, Ramanujan Mathematical Society Lecture Notes Series 7 (2008) 195-203.
- [3] D. B. West, *Introduction to Graph Theory*, second eddition Prentice–Hall, New Jersey, 2001.
- [4] H.B. Walikar, B.D. Acharya, Kishori Narayankar, H.G. Shekharappa, Embedding index of nonindominable grapgs, in:S.Arumugam, B.D. Acharya,S.B. Rao(Eds), Procedings of the National Conference on Graph, Combinatorics, Algorithms and Applications, Arulmigu Kalasalingam College of Engineering, Krishnankoli, Narsoa Publishing House, New Delhi, 2004, pp. 173-179.